
 Page 1

NEMSIS TAC Whitepaper

NEMSIS V3 Schematron Guide

Date
November 23, 2011 (Final)
January 17, 2014 (Rewritten – Candidate Release 1)
March 3, 2014 (Updated)
March 2, 2015 (Updated)
September 7, 2017 (Updated references)

Authors
Joshua Legler – NEMSIS Consultant
Shaoyu Su – NEMSIS Software Developer
N. Clay Mann – NEMSIS P.I.

Contributors
Aaron Hart, Chris Morgan, Mike Darvill,

and René Nelson – ZOLL
Adam Voss – TriTech Software Systems
David Saylor – Beyond Lucid Technologies
Jeff Robertson – EMSPIC
Jessica Lundberg – Cognitech
Juan Esparza – State of Florida

Kashif Khan and Troy Whipple – ImageTrend
Lindsey Narloch – State of North Dakota
Mark Potter – Medusa
Patrick Sennett – Good Samaritan Hospital
Paul Sharpe – Commonwealth of Virginia
Ryan Smith – Intermedix
Tom Walker – University of Alabama

Overview
Schematron is a rule-based language for XML document validation. Schematron is an international
standard defined in ISO/IEC 19757-3(2006) (hereafter referred to as “normative standard”). Anyone who
creates Schematron files or software that performs Schematron-based validation should obtain a copy
of the normative standard at https://www.iso.org/standard/40833.html. (Note: The normative standard
was updated in 2016. Software compliant with NEMSIS version 3.4 should implement the 2006 version
of the normative standard, as contained in the NEMSIS version 3.4 Schematron Development Kit.)

Much of the validation in NEMSIS is accomplished via the use of W3C XML Schemas (known as XSD).
XML Schemas constrain the structure of NEMSIS XML documents and the contents of elements and
attributes within those documents using grammar-based validation. However, XML Schemas are not
capable of context-sensitive validation, such as constraining the contents of one element based on the
contents of another element. The rule-based validation provided by Schematron fills the gap.

https://www.iso.org/standard/40833.html

 Page 2

Purpose
This document sets forth requirements and guidelines for Schematron rule files and for software that
performs validation using Schematron rule files. The following terms in this document have special
meaning when displayed in uppercase:

• MUST: Specified feature is mandatory and will be verified through compliance processes.

• SHOULD: Specified feature is recommended but will not be verified through compliance
processes.

• MAY: Specified feature is allowed but not mandatory.

Most of the content of this document is divided into the following two sections:

• Requirements and Guidelines for Schematron File Creators (p. 3)

• Requirements and Guidelines for Systems that Perform Validation (p. 10)

Structure of a Schematron File
Following is a general overview of the structure of a Schematron file. The normative standard should be
consulted for details. (? means the element must occur zero or one time; * means the element must
occur zero or more times; + means the element must occur one or more times; no qualifier means the
element must occur exactly one time.)

schema The document element for a Schematron file

phase* A named group of patterns, to support phased validation

active* A reference to a pattern that is active within a phase

pattern+ A container for related rules

rule* A container for assertions tested within a particular context

assert* An assertion (validation requirement) to be tested

text A message to be generated if the assert test fails

report* An assertion (validation requirement) to be tested

text A message to be generated if the report test succeeds

diagnostics? A container for diagnostic information

diagnostic* A message giving more specific details concerning a failed assertion

 Page 3

Requirements and Guidelines for Schematron File Creators

NEMSIS Schematron File Content Requirements
All aspects of the normative standard apply to NEMSIS Schematron files, unless specifically constrained
in this section. NEMSIS imposes additional requirements on the contents of Schematron files that are
more restrictive than the normative standard. The additional NEMSIS requirements are listed below, by
element.

schema
@defaultPhase MUST be undefined.

@id SHOULD be the name of the NEMSIS data set the schema is intended to validate (DEMDataSet or
EMSDataSet).

@queryBinding MUST be xslt2 (see XSLT 2 Query Language Binding, p. 4).

@schemaVersion SHOULD be the full NEMSIS release version and build number the schema is
intended to validate (for example, 3.3.3.130926), which MAY be followed by an underscore and a
version number and build number specific to the Schematron file itself.

title SHOULD contain plain language and SHOULD indicate the name of the entity providing the
schema (for example, the name of a state or territory).

diagnostics MUST exist and MUST at least contain the pre-defined diagnostic section supplied by
the NEMSIS TAC. (See Referencing Diagnostics, p. 5.)

pattern
title MUST exist, SHOULD contain human-readable text, and SHOULD be written from the perspective
of a business analyst.

rule
@role MUST NOT exist.

assert and report
@diagnostics MUST exist and MUST consist of a space-delimited list containing at least
nemsisDiagnostic. (See Referencing Diagnostics, p. 5.)

@role MUST exist and MUST be [FATAL], [ERROR], or [WARNING]. (See Setting Severity Levels, p. 5.)

The content SHOULD be a natural language assertion written from the perspective of an EMS
professional. (See Writing Natural Language Assertion Text, p. 7.)

Verifying Validity of Schematron Files
A NEMSIS Schematron file MUST be valid according to both the normative standard and the NEMSIS
requirements. Specifically, it must be valid according to the following schemas:

• Normative standard RELAX NG schema for Schematron files

• Normative standard Schematron schema for Schematron files

 Page 4

• NEMSIS Schematron schema for Schematron files

All of the above schemas, as well as a NEMSIS Schematron file template designed to comply with
NEMSIS requirements, are available from the NEMSIS TAC (see NEMSIS Schematron Development Kit, p.
10).

RELAX NG Schema validators are less prevalent than W3C XML Schema (XSD) validators; recommended
tools include Jing (http://code.google.com/p/jing-trang/) and xmllint (http://xmlsoft.org/).

The following sequence of commands illustrates how to validate a NEMSIS Schematron file using Jing for
RELAX NG validation and the Schematron reference implementation and Saxon (see Reference
Implementation, p. 14) for Schematron validation (this is the process the NEMSIS TAC uses when
validating files submitted by states):

First, process any Schematron include elements that are present in the Schematron file:

[path/to/saxon/]Transform
–xsl:iso-schematron-xslt2\iso_dsdl_include.xsl
–s:[SchematronFile.sch]
–o:[SchematronFile1.sch]

Validate the Schematron file per the normative standard RELAX NG schema for Schematron files:

[path/to/jing]
[path/to/]iso-schematron.rng
[SchematronFile1.sch]
> [RelaxNgValidationResults.txt]

Validate the Schematron file per the normative standard Schematron schema for Schematron files:

[path/to/saxon/]Transform
–xsl:[path/to/]iso-schematron.xsl
–s:[SchematronFile1.sch]
–o:[IsoSchematronValidationResults.svrl]

Validate the Schematron file per the NEMSIS Schematron schema for Schematron files:

[path/to/saxon/]Transform
–xsl:[path/to/]nemsis-schematron.xsl
–s:[SchematronFile1.sch]
–o:[NemsisSchematronValidationResults.svrl]

Schematron rule authors are welcome to submit Schematron code samples to the NEMSIS TAC early in
their development cycle to obtain feedback regarding approaches they plan to use in writing
Schematron files.

XSLT 2 Query Language Binding
In Schematron, the query language binding specifies the language used for rule context expressions,
assertion tests, etc. Schematron implementations may support various query language bindings.
However, NEMSIS Schematron files MUST use the Extensible Stylesheet Language Transformations
(XSLT) version 2 query language binding, and all implementations MUST support XSLT 2.

http://code.google.com/p/jing-trang/
http://xmlsoft.org/

 Page 5

XSLT 2 incorporates XML Path Language (XPath) version 2. Schematron rule authors should be proficient
in XSLT 2 and XPath 2.

XSLT document() Function
The XSLT document() function allows a Schematron file to reference external resources. Schematron
rule authors SHOULD avoid the use of the document() function, for the following reasons:

• If the document() function references an external resource, the Schematron file is no longer
self-contained: it becomes dependent on the external resource. Systems that perform validation
may not always be online and able to retrieve network-based resources, and they may not
support the ability to locally manage external resource files along with a Schematron file.

• If the document() function references a relative URI or the Schematron file itself, the base URI
may be ambiguous or undefined in systems that store and retrieve Schematron files from
locations other than a file system (such as database or in-memory implementations).

Schematron rule authors should use the Schematron include element instead of the XSLT
document() function. The document() function is evaluated each time validation is performed. On
the other hand, the Schematron include element is evaluated at the time a Schematron file is
compiled into XSLT when using the reference implementation of Schematron. (see Reference
Implementation, p. 14).

Setting Severity Levels
Schematron rule authors MUST set a severity level for every assert or report by setting the @role
attribute to [FATAL], [ERROR], or [WARNING]. Severity levels MUST NOT be set in any other location.
The following examples demonstrate the three severity levels allowed in NEMSIS Schematron files:

<sch:assert role="[FATAL]" diagnostics="…" id="…" test="…">…</assert>
<sch:assert role="[ERROR]" diagnostics="…" id="…" test="…">…</assert>
<sch:assert role="[WARNING]" diagnostics="…" id="…" test="…">…</assert>

For information on how systems must behave when encountering the various severity levels, see
Interpreting Severity Levels, p. 11.

Referencing Diagnostics
All Schematron files MUST contain a copy of the national diagnostic and MUST refer to it within
assert and report elements. The national diagnostic ensures that detailed, structured information
is available on every failed assert or successful report, which is used by software to provide a user
with options for resolving validation problems. The @id of the national diagnostic is
nemsisDiagnostic. The following example shows how the national diagnostic is referenced within
an assert:

<sch:assert diagnostics="nemsisDiagnostic" role="…" id="…" test="…">…
</assert>

The national diagnostic contains three parts.

• record: A set of elements that uniquely identify the agency demographic report or patient care
report where the validation problem was found.

 Page 6

• elements: A list of specific NEMSIS elements that were present in the record that the user may
need to edit in order to resolve the validation problem.

• elementsMissing: A list of NEMSIS elements that were not present in the record that the user
may need to edit in order to resolve the validation problem.

Every assert or report uses the record part simply by referring to the national diagnostic.
Additionally, every assert or report SHOULD use the elements or elementsMissing part, or both
parts, in order to facilitate the ability for the software to direct the user to the areas of the record that
should be edited in order to resolve a validation problem.

Details on how to use each part are provided below.

record
Record information is generated for each failed assert or successful report. No further configuration
is required on the part of the rule author.

elements
To use the elements part, the rule author must declare a Schematron variable within a rule. The
variable MUST be named nemsisElements and MUST contain a set of XML elements defined using
XPath, relative to the context of the rule. All elements in the set SHOULD be terminal elements: they
SHOULD NOT contain any child elements.

The simplest example defines the nemsisElements variable as a set containing only the element that
is the context of the current rule. If the context of the current rule is eTimes.03, the following will
refer to an instance of eTimes.03:

<sch:let name="nemsisElements" value="."/>

The next example defines the nemsisElements variable as a set containing all of the children of the
element that is the context of the current rule. If the context of the current rule is eTimes, the
following will refer to all of the elements that are children of an instance of eTimes (eTimes.01
through eTimes.16):

<sch:let name="nemsisElements" value="*"/>

The next example defines the nemsisElements variable as a set containing specific elements. If the
context of the current rule is eTimes and the namespace prefix for the NEMSIS namespace is nem, the
following will refer to eTimes.03 and eTimes.04 (the parentheses are important to indicate that the
elements are part of a set):

<sch:let name="nemsisElements" value="(nem:eTimes.03, nem:eTimes.04)"/>

elementsMissing
An XPath reference cannot be generated for elements that do not exist in a particular record. The
elementsMissing part is used to provide a list of names of missing elements, along with the XPath for
the elements that would be the parents of the missing elements.

 Page 7

To use the elementsMissing part, the rule author must declare a Schematron variable within a rule.
The variable must be named nemsisElementsMissing and must contain a space-delimited list of
NEMSIS elements (without namespace prefix).

The rule author may also declare a Schematron variable named nemsisElementsMissingContext,
which must contain a set of XML elements defined using XPath, relative to the context of the rule. Each
element in the set should be an element that would be the parent of one or more of the elements listed
in nemsisElementsMissing. If nemsisElementsMissingContext is not declared, then it is
assumed to be the element selected by the context of the rule.

The first example defines the elementsMissing variable to be eDispatch.03 (the single quotes
inside of the double quotes are important to indicate that the @value is a string). If the context of the
rule is eDispatch, the parent element is an instance of eDispatch:

<sch:let name="nemsisElementsMissing" value="'eDispatch.03'"/>

The next example is as above but defines the elementsMissing variable to be eDispatch.03,
eDispatch.04, and eDispatch.05:

<sch:let name="nemsisElementsMissing"
 value="'eDispatch.03 eDispatch.04 eDispatch.05'"/>

The next example is as the first but explicitly sets the context to be an instance of eDispatch, if the
context of the rule is PatientCareReport and the namespace prefix for the NEMSIS namespace is
nem:

<sch:let name="nemsisElementsMissing" value="'eDispatch.03'"/>
<sch:let name="nemsisElementsMissingContext" value="nem:eDispatch"/>

The national diagnostic matches each element named in nemsisElementsMissing with its parent
in nemsisElementsMissingContext by comparing element names. For example, eDispatch.03 is
matched with eDispatch because its name starts with eDispatch. If a missing element’s name
matches more than one of the elements in nemsisElementsMissingContext, the element that
occurs first in the NEMSIS XML document is used. If a missing element’s name matches none of the
elements in nemsisElementsMissingContext, the element selected by the context of the rule is
used.

Writing Natural Language Assertion Text
Natural language assertion text should be written from the perspective of an EMS professional and
adhere to the following guidelines:

• It SHOULD consist of grammatically correct and complete sentences.

• It SHOULD use sentence case (not all UPPER or all lower case).

• It SHOULD be a positive statement of a constraint: it should be a statement of what is expected
rather than a statement of what was found that was incorrect. The following examples illustrate
the difference:

 Page 8

o Correct: Unit En Route Date/Time should not be prior to Unit Notified by Dispatch
Date/Time.

o Incorrect: Unit En Route Date/Time is prior to Unit Notified by Dispatch Date/Time.

• It SHOULD use NEMSIS element names/titles (“Unit Notified by Dispatch Date/Time”) rather
than XML element names (“eTimes.03”).

• When referring to expected enumerated list values, it SHOULD use NEMSIS value labels (“Yes”)
rather than XML values (“9923003”).

• It SHOULD NOT have contents that are intended to be parsed by software, other than the
Schematron elements allowed by the normative standard. Diagnostics should be used to provide
such information.

Managing State and Local Rules
State and local rules MUST be provided in separate files from the national rules.

State and local rule files SHOULD avoid using @id values that are already used in the national
Schematron files. Patterns, rules, asserts, and reports in the national Schematron files have @id values
that start with nemSch_.

State rule files MUST contain an exact copy of the national diagnostic section and use it. (See
Referencing Diagnostics, p. 5).

A state or local entity may escalate the severity level of an assert or report that is already defined in
a national rule file. The recommended mechanism for doing so is to copy the national assert or
report (and any elements on which it depends) into the state or local rule file and modify the @role
attribute.

A state or local entity MUST NOT modify the national rule files. This implies that it is not possible for a
state or local entity to de-escalate the severity level of an assert or report that is already defined in a
national rule file.

States that maintain state rule files MUST submit the files to the NEMSIS TAC. The NEMSIS TAC will
resolve any Schematron include elements and then validate the files. (See Verifying Validity of
Schematron Files, p. 3.)

The NEMSIS TAC publishes the following valid and approved Schematron rule files for DEMDataSet and
EMSDataSet:

• National rules

• State rules for each state that provides state rules

Versioning
New minor versions of the XML Schemas (XSDs) for NEMSIS are backward-compatible: any file that is
valid in a previous version of NEMSIS will also be valid in the current version. In contrast, new versions of
Schematron files for NEMSIS are not guaranteed to be backward-compatible: a file that is valid in a

 Page 9

previous version of NEMSIS may not be valid in the current version. The Schematron rule development
process allows for new business constraints to be identified and introduced over time.

Schematron rule authors should consider how new rules may affect the validity of existing records. The
following information is provided for consideration:

NEMSIS XML documents may contain @xsi:schemaLocation, which contains the URL of a specific
release of the NEMSIS XML Schemas. Rule authors may choose to test the value of that attribute within
rules and then apply assertions selectively based on the version to which the attribute refers. In doing
so, rule authors would need to decide upon a default behavior in case the attribute is not present in the
XML document.

New versions of the national rule files are published in accordance with the NEMSIS release cycle. When
each new version of the NEMSIS standard is published for public comment, each state MUST test its
state rule files to identify whether any incompatibilities exist. If incompatibilities exist, the state MUST
submit updated state rule files to the NEMSIS TAC; otherwise, the state MUST notify the NEMSIS TAC
that the existing state rule files are compatible with the new version of NEMSIS.

States may release updates to state rule files at other times outside of the NEMSIS release cycle. Each
state SHOULD submit its release cycle to the NEMSIS TAC so that it can be published on the NEMSIS web
site.

(See also Schematron Release Cycles, p. 13.)

Managing Optional Rules
States may define additional validation rules that are optional for use at the local level. Optional rules
MUST NOT be included in state rule files. However, a state MAY include optional rules in a separate file
and submit it to the NEMSIS TAC. The file MUST be a valid NEMSIS Schematron file. (See Verifying
Validity of Schematron Files, p. 3.) The NEMSIS TAC does not review or endorse the contents of the file
other than ensuring it is valid.

Maintaining Documentation
Good documentation is important for the successful implementation of validation rules. Schematron
rule authors SHOULD document their rule files.

Documentation of the national rule files is published in a format similar to the NEMSIS Data Dictionary.
The NEMSIS TAC publishes the same documentation interface for state rule files as well. Rule authors
may strengthen the value of the documentation interface by the generous use of XML comments within
their files. The comments should contain human-readable text regarding the elements within a file,
including information such as why they are important, how they were developed, or pseudo-code
representing how they function.

Designing for Performance
Schematron rule authors should consider the impact that each rule has on validation processing time.
The following suggestions may help. While they are specific to the XSLT-based reference
implementation of Schematron (see Reference Implementation, p. 14), they may apply to other
implementations as well:

 Page 10

• Phased validation requires the overhead of validating a document in multiple passes. Phases are
resolved in the process of compiling the Schematron file into XSLT, so a different XSLT file is
generated to execute each phase of validation.

• Abstract patterns, abstract rules, and diagnostic references are resolved during the process of
compiling the Schematron file into XSLT. Abstracts are good for maintainability and code re-use,
but they do not improve performance.

• Processing is performed in document order. Each element in the document is selected one at a
time. Then, each active pattern is searched for the first rule whose context matches the selected
element. The first rule that matches is then fired, and all contents within the rule are processed.
Performance is better if related rules are grouped together within a pattern, the context of each
rule is more restrictive, and the rules that are more likely to be matched occur earlier within a
pattern. Schematron files with fewer patterns and fewer fired rules will generally perform more
quickly.

Consider using a predefined set of records for benchmarking. Each time an element is added or modified
in a Schematron file, re-run the benchmark to calculate the performance impact of the change.

NEMSIS Schematron Development Kit
The NEMSIS TAC supplies a Schematron development kit. Its purpose is to help Schematron rule authors
create well-designed Schematron files and validate them. It contains the following folders and
resources:

• rules: Templates for building NEMSIS Schematron files

• utilities/html: an XSLT file and accompanying resources to generate documentation in
HTML format from a Schematron file

• utilities/schema: RELAX NG and Schematron schemas for validating Schematron files

Requirements and Guidelines for Systems that Perform Validation

Schematron Validation within the Validation Workflow
All NEMSIS-compliant systems MUST perform XML Schema validation and Schematron validation:

• Systems that collect and send data MUST perform validation on each record at the time it is
finalized.

• Systems that receive and process data MUST perform validation on each NEMSIS XML document
that they receive.

Requirements for Schematron validation within the validation workflow are outlined in the Web
Services Guide and the Compliance documentation. The following points are reiterated here:

https://nemsis.org/technical-resources/version-3/version-3-web-services/
https://nemsis.org/technical-resources/version-3/version-3-web-services/
https://nemsis.org/technical-resources/version-3/v3-compliance/

 Page 11

All systems:

• A system MUST perform XML Schema validation before Schematron validation. If XML Schema
validation fails, Schematron validation SHOULD NOT be performed.

• A system MUST be capable of performing Schematron validation on a NEMSIS XML document
using multiple Schematron files (such as national, state, and local Schematron files). A system
SHOULD process national rules first.

Systems that collect and send data:

• A system that collects and sends data MUST validate each record (agency demographic report or
patient care report) when it is finalized (when data entry is completed by an EMS professional)
and any time it is subsequently modified.

Systems that receive and process data:

• If XML Schema validation fails, the receiving system SHOULD reject the entire transaction.

• A receiving system MUST provide Schematron validation results using Schematron Validation
Report Language (SVRL). (See Schematron Validation Report Language, p. 11.)

A Schematron file MAY define phases to support phased validation. A system MAY support selecting a
phase for validation, as long as the system ensures that all patterns have been executed before a record
is considered valid.

Schematron Validation Report Language
A system that receives and processes data MUST provide Schematron results using Schematron
Validation Report Language (SVRL). SVRL is described in an informative appendix to the normative
standard. The NEMSIS TAC maintains a modified version of the RELAX NG schema for SVRL in the
NEMSIS Schematron Development Kit. In particular, the following deviations from the informative
appendix are allowed in the NEMSIS schema for SVRL:

• fired-rule MAY occur zero times.

• diagnostic-reference MAY contain XML elements.

An SVRL document MUST be valid according to the NEMSIS RELAX NG schema for SVRL. (When using
valid NEMSIS Schematron files, the XSLT-based reference implementation of Schematron generates valid
NEMSIS SVRL output.)

Interpreting Severity Levels
Severity levels are defined using the @role attribute on assert and report elements.

A system MUST determine record validity based on severity levels in the following way:

• [FATAL]: If a record contains any [FATAL] problems, it is not valid.

• [ERROR]: If a record contains any [ERROR] problems, it is not valid.

 Page 12

• [WARNING]: If a record contains only [WARNING] problems, it is valid.

A web services transaction may include multiple records. A receiving system MUST behave as follows
when receiving data, based on severity levels:

• [FATAL]: If a document contains any [FATAL] problems, it is not valid. The receiving system
MUST reject the transaction.

• [ERROR]: If a document contains any [ERROR] problems, it is not valid. The receiving system
MUST either reject the transaction or reject the records within the transaction that have
[ERROR] problems while accepting the rest of the records.

• [WARNING]: If a document contains only [WARNING] problems, it is valid. The receiving system
MUST accept the transaction.

Using Diagnostic References
Every valid NEMSIS Schematron file contains a diagnostic named nemsisDiagnostic. Systems that
perform validation MUST implement nemsisDiagnostic. (If using the XSLT-based reference
implementation of Schematron, this is accomplished by setting the parameter allow-foreign=true
on the final stage of transforming a Schematron file into XSLT.)

When a document fails Schematron validation, every failed-assert or successful-report
contains a diagnostic-reference with @diagnostic set to nemsisDiagnostic, with the
following structure, in the http://www.nemsis.org namespace. (? means the element must occur
zero or one time; * means the element must occur zero or more times; + means the element must occur
one or more times; no qualifier means the element must occur exactly one time.)

nemsisDiagnostic

record Elements that uniquely identify the record with the problem

dAgency.01

dAgency.02

dAgency.04

eRecord.01? Not present on demographics validation

elements Elements that the user may edit to resolve the problem

element*

@location XPath expression

 (any attributes that exist on the element)?

(text)? The value of the element

elementsMissing Missing elements that the user may edit to resolve the problem

 Page 13

element*

@parentLocation Xpath expression for the parent element

@name XML name of element

 (no text)

The nemsisDiagnostic information enables a system to provide intelligent guidance to a user
regarding which elements the user may need to edit in order to resolve a problem. Systems that collect
and send data SHOULD process the diagnostic data and MAY highlight or provide links to the relevant
elements of the agency demographic report or patient care report where the problem can be resolved.

Improving Performance
Schematron validation can generate verbose output in SVRL. The following suggestions may help. While
they are specific to the XSLT-based reference implementation of Schematron, they may apply to other
implementations as well:

• For production environments, the parameter generate-fired-rule=false may be set on
the final stage of transforming a Schematron file into XSLT. SVRL output generated by that XSLT
will not contain any fired-rule elements, which usually constitute the bulk of an SVRL
document; it will still contain failed-assert and successful-report elements in cases
where there are validation problems. The SVRL document will be considerably smaller,
especially when there are no validation problems.

• Systems that receive and process data MAY omit Schematron processing results in their
response to the client if all records in the transaction were accepted.

• Because of the implementation of severity levels within NEMSIS Schematron validation, a
NEMSIS document may trigger failed-assert or successful-report statements in SVRL
validation results and yet be a valid document (in other words, all of the failed-assert and
successful-report statements may be at the [WARNING] level). The following XPath query
of the SVRL output tests whether the document contains any validation problems at the
[FATAL] or [ERROR] levels: //@role=('[FATAL]','[ERROR]').

Schematron Release Cycles
New versions of the national rule files are published in accordance with the NEMSIS release cycle.

Maintainers of state systems may choose to implement XML Schema changes quickly (to ensure that
new data values are accepted in the state system) but defer Schematron changes until the end of the
year (to ensure that the new rules have been implemented at the local level first).

If a state system implements new Schematron rules before a local system does, then a record that was
found valid by a local system may be found invalid by the state system at the time of submission. The
local system MUST communicate the error(s) to a user for resolution.

(See also Versioning, p. 8.)

 Page 14

Reference Implementation
A reference implementation of Schematron is available at http://code.google.com/p/schematron/. It
implements Schematron processing using a series of Extensible Stylesheet Language Transformations
(XSLT). NEMSIS Schematron files use XSLT2 as the required query binding and therefore require an XSLT
processor that implements XSLT version 2.0. A schema-aware (SA) processor is not required.

The following sequence of commands illustrates how to transform a Schematron file into an XSLT file
using the Saxon XSLT processor. (The commands are broken into multiple lines for clarity but should be
typed on one line.)

[path/to/saxon/]Transform
–xsl:iso-schematron-xslt2\iso_dsdl_include.xsl
–s:[SchematronFile.sch]
–o:[SchematronFile1.sch]

[path/to/saxon/]Transform

–xsl:iso-schematron-xslt2\iso_abstract_expand.xsl
–s:[SchematronFile1.sch]
–o:[SchematronFile2.sch]

[path/to/saxon/]Transform

–xsl:iso-schematron-xslt2\iso_svrl_for_xslt2.xsl
–s:[SchematronFile2.sch]
–o:[SchematronFile.xsl]
allow-foreign=true

The first command processes any Schematron include elements that are present in the Schematron
file. (Note that this first step has already been performed on all Schematron files published by the
NEMSIS TAC.)

The second command expands all instances of abstract patterns. (See Designing for Performance, p. 9.)

The third command transforms the Schematron file into an XSLT file. The allow-foreign=true
parameter ensures that non-Schematron elements in NEMSIS Schematron files are preserved (which is
important for NEMSIS diagnostics to work). Other parameters are available as well and are documented
in iso_svrl_for_xslt2.xsl. In particular, the generate-fired-rule=false parameter may be
used to generate an XSLT file that will not produce fired-rule statements in its SVRL output. (See
Improving Performance, p. 13.) If using phases, it is important to note that phase is provided as a
parameter at this stage of processing. For example, if a Schematron file defines multiple phases, and an
implementation intends to execute validation in phases (rather than the default behavior of executing
all patterns at once), then a separate XSLT file will be created for performing each phase of validation.

Implementations based on the reference implementation should execute all of the above commands
upon receipt of a new Schematron file. They can then use the resulting XSLT file to validate NEMSIS XML
documents. The following command performs Schematron validation on a NEMSIS XML document and
generates results in SVRL:

http://code.google.com/p/schematron/

 Page 15

[path/to/saxon/]Transform
–xsl:[SchematronFile.xsl]
–s:[NemsisXmlFile.xml]
–o:[ValidationResults.svrl]

In SVRL generated by the reference implementation, active-pattern elements contain a @document
attribute, which reports the location (URI or file path) of the XML document being validated. The
NEMSIS TAC modified version of the RELAX NG schema for SVRL allows but does not require the
@document attribute. For security, it may be advisable for implementations based on the reference
implementation to omit or suppress the @document attribute (it can be done by modifying
iso_svrl_for_xslt2.xsl or post-processing its output).

The examples above demonstrate how to use Saxon to execute the reference implementation of
Schematron via a command line. However, implementers should use tools and application programming
interfaces (APIs) that are available within their development environment. For example, Saxon provides
Java and .Net APIs.

Limitations
A combination of XML Schema validation and Schematron validation covers the majority of validation
rules that may be identified in NEMSIS data. However, neither form of validation is well-suited for the
following kinds of validation:

• Authenticating the credentials of a web services client and determining whether the client is
authorized to submit the data contained in a transaction. These activities should be part of the
security layer of a system that receives and processes data.

• Validating data based on value lookups in large lists, such as GNIS, ICD-10, SNOMED, or RxNorm.
Schematron is capable of these activities, but it may not perform well on lower-performing
hardware, and it may be difficult to keep the lists up-to-date in field installations. It is best suited
for server processing.

• Performing statistical or longitudinal analysis and validation. For example, it is reasonable to
assert that the gender mix within a large set of patient care reports should be close to 50/50;
but since NEMSIS data may be transferred in batches as small as a single record, it is not
practical to apply such an assertion to each transaction.

Conclusions
Schematron facilitates rule-based validation capabilities on NEMSIS data. The requirements in this guide
ensure consistency and compatibility among NEMSIS Schematron rule files and software that performs
validation on NEMSIS data.

