
NEMSIS V3 Web Services Guide Page 1 of 13

NEMSIS TAC Whitepaper

NEMSIS V3 Web Services Guide
Date
February 27, 2020

Author:
Dhanya Sathyan - Software Design Engineer, NEMSIS TAC
Laurel Baeder – Software Design Engineer, NEMSIS TAC

NEMSIS V3 Web Services Guide
Background
Software applications seeking NEMSIS V3 compliance must support data exchange via Web Services
(WS) as described in this guide. The standardized NEMSIS WS API provides the following advantages:

1. Fully automated electronic data exchange (including submission and retrieval) between
agency, regional, state, and national systems.

2. Better transaction management: The data exchange can be easily monitored without risk of
timeouts by using an asynchronous transaction model. In NEMSIS systems, XML and
business validation reports can be available in real time from the same communication
channel.

3. Possibility to move to real-time data exchange supporting public health surveillance.
4. Vendor independence, scalability, and wide acceptance/adoption.

Purpose of NEMSIS V3 Web Services API
The NEMSIS V3 WS API is a unified interface that supports data exchange between distributed NEMSIS
V3 systems. In a typical scenario, a client can interact with a Web Service at a given URL by using the
HTTPS protocol. NEMSIS Web Services are based on SOAP.

Major Design Goals:

1. Flexibility: Allows applications to communicate over the Web in a platform-neutral, language-
independent environment.

2. Efficiency: Instant response and quick turn-around.
3. Unity: Minimize confusion over information exchange by standardizing the information

exchange interface.

NEMSIS V3 Web Services Guide Page 2 of 13

Work Flow Diagram (Submission Request Only)

NEMSIS V3 Web Services Guide Page 3 of 13

General Requirements
NEMSIS “Collect Data” systems must implement the NEMSIS Web services requirements as clients.
“Collect Data” systems must be able to send NEMSIS EMSDataSet and DEMDataSet data to compliant
“Receive and Process” systems and process the messages returned by “Receive and Process” systems.

NEMSIS “Receive and Process” systems must implement the NEMSIS Web services requirements as both
clients and servers. As clients, “Receive and Process” systems must be able to send NEMSIS EMSDataSet,
DEMDataSet, and StateDataSet data to the national EMS database and process the messages returned
by the national EMS database. “Receive and Process” systems must also implement all operations, data
types, and codes defined by the NEMSIS WSDL to receive NEMSIS EMSDataSet and DEMDataSet data
from other systems and return messages regarding validation and processing results.

Detailed Requirements
Protocol
Simple Object Access Protocol (SOAP) is required. SOAP is a W3C standard protocol for sending and
receiving requests and responses over the internet. SOAP messages can be sent back and forth between
clients and servers in SOAP envelopes.

Security
Hyper Text Transport Protocol Secure (HTTPS) is the required communication channel. HTTPS is used for
secure communication over public networks. In HTTPS, the transmission of information is encrypted
using Transport Layer Security (TLS). Systems should support TLS version 1.3, must support version 1.2,
and must not support versions 1.0 and 1.1.

Web Service messages might include sensitive information such as login credentials and protected
health information (PHI). These types of data must be protected at the transport level.
WSDL
NEMSIS Web services are defined using Web Services Description Language (WSDL) A WSDL document
describes how to access a web service and what operations are supported.

The NEMSIS standard reference WSDL is at
https://nemsis.org/media/nemsis_v3/master/WSDL/NEMSIS_V3_core.wsdl. All NEMSIS web services
must implement the operations and data types defined in the reference WSDL. Services may implement
additional operations and data types or values.

Services should publish a WSDL. For example, the NEMSIS Validator WSDL is available at
https://validator.nemsis.org/nemsisWs.wsdl.

The WSDL specifies the address to which clients may submit requests:

<soap:address location="https://validator.nemsis.org/"/>

In the example above, operations exposed by this Web Service will be available at the URL,
“https://validator.nemsis.org/”.

https://nemsis.org/media/nemsis_v3/master/WSDL/NEMSIS_V3_core.wsdl
https://validator.nemsis.org/nemsisWs.wsdl
https://validator.nemsis.org/

NEMSIS V3 Web Services Guide Page 4 of 13

The WSDL specifies the operations:

<wsdl:operation name="RetrieveStatus">
<wsdl:input message="tns:RetrieveStatusRequest" name="RetrieveStatusRequest"> </wsdl:input>
<wsdl:output message="tns:RetrieveStatusResponse" name="RetrieveStatusResponse"> </wsdl:output>
</wsdl:operation>
<wsdl:operation name="SubmitData">
<wsdl:input message="tns:SubmitDataRequest" name="SubmitDataRequest"> </wsdl:input>
<wsdl:output message="tns:SubmitDataResponse" name="SubmitDataResponse"> </wsdl:output>
</wsdl:operation>
<wsdl:operation name="QueryLimit">
<wsdl:input message="tns:QueryLimitRequest" name="QueryLimitRequest"> </wsdl:input>
<wsdl:output message="tns:QueryLimitResponse" name="QueryLimitResponse"> </wsdl:output>
</wsdl:operation>

This Web Service provides “RetrieveStatus”, “SubmitData” and “QueryLimit” operations. All NEMSIS-
compliant web service implementations must support these operations.

Status Codes
All responses from the Web Service must have a Status Code to communicate to a client what happened
with a request. All Status Codes are defined in the WSDL, and listed at the end of this document.

1. Common errors (defined by the WSDL standard) should be included in the Response Data and
use the appropriate Status Code as indicators.

2. The NEMSIS WSDL defines a set of standard response codes. All WS response messages must
include a status code.

a. All error codes are negative integers.
b. All success codes are positive integers.
c. Integer “0” means that the requested action is not completed yet. The client should

query the server later to retrieve final processing status.
d. Systems may define custom error codes, with integers smaller than -100. Similarly,

custom success codes should use integers greater than 100. The NEMSIS TAC does not
test the ability to support custom codes.

3. Systems must adopt the definitions from the NEMSIS WSDL for codes between -100 and 100.
For example, it is non-compliant to use “-1” as a status code for “Failed import of a file, because
of the [FATAL] level Schematron rule violation” since “-1” has been defined in the NEMSIS WSDL
as “Invalid username and/or password”.

Important Common Objects
DataPayload
The submitPayload object is required for submitting data. It must contain a payloadOfXmlElement,
which must contain the XML document being submitted. A simple example:

payloadOfXmlElement

<submitPayload>
 <payloadOfXmlElement>
 <EMSDataSet xmlns="http://www.nemsis.org" … >
 …
 </EMSDataSet>
 </payloadOfXmlElement>
</submitPayload>

NEMSIS V3 Web Services Guide Page 5 of 13

DataSchema and schemaVersion
Compliant implementations must support the EMSDataSet and DEMDataSet schemas. Services are not
required to support the StateDataSet schema, but Receive and Process systems must be able to send
StateDataSet data to the national EMS database. States/vendors may define custom schema codes. The
NEMSIS TAC does not test the ability to support custom codes.

Combined with DataSchema, schemaVersion helps to identify the exact schema used for the payload.
For example, DataSchema = “61” and schemaVersion = ”3.4.0” is a valid combination. It points to v3.4.0
of NEMSIS EMSDataSet schema. However, there is no version 2.5.6 for NEMSIS EMSDataSet. So
DataSchema = “61” and schemaVersion = “2.5.6” is not a valid combination.

The national EMS database supports the following schema and version combinations:

Dataset requestDataSchema schemaVersion
EMSDataSet 61 3.3.4, 3.4.0, 3.5.0
DEMDataSet 62 3.3.4, 3.4.0, 3.5.0
StateDataSet 65 3.5.0

SubmitDataReport
SubmitDataReport is for the report of data submission processing. It should include at least one
XmlValidationErrorReport element for the XML Schema (XSD) validation report. The format
implementation is as follows:
1. If the submission fails XSD validation, SubmitDataReport is required to contain one

XmlValidationErrorReport. Since the submission is rejected at that step, SchematronReport must not
be included.

2. If the submission passes XSD validation, SubmitDataReport must contain
a. XmlValidationErrorReport, with XmlValidationErrorReport’s totalErrorCount set to zero.
b. SchematronReport, which contains completeSchematronReport in Schematron Validation

Report Language (SVRL). (If a receiving system accepts all records in a transaction, then it may
omit schematronReport.)

3. SubmitDataReport may include optional CustomReport elements. The NEMSIS TAC does not test the
ability to support CustomReport.

4. The SchematronReport allows two deviations from the SVRL standard. More details are available in
Schematron Guide.

a. Fired-rule may occur zero times.
b. Diagnostic-reference may contain XML elements.

XmlElementInfo
This is used to identify the offending XML element reported in XSD validation. Line/column numbers, or
XPATH location, could be used to identify the position of an XML element.
Usually, DOM parsers (validators) report XPATH information, and SAX/StAX parsers (validators) report
line/column numbers. Some XML processors, such as SAXON EE/PE, can report both. Services must
support line/column or XPath position reporting. Services may support both but are not required to do
so. In cases where an error cannot be traced to a specific location, a service may use the
elementLocationUnknown element.

https://nemsis.org/media/nemsis_v3/master/Schematron/Documentation/NEMSIS_V3_Schematron_Guide.pdf

NEMSIS V3 Web Services Guide Page 6 of 13

XmlValidationError
There are two major types of XML validation errors (for a complete list of XML validation errors, check
http://svn.apache.org/viewvc/xerces/java/trunk/src/org/apache/xerces/impl/msg/). One could be
pinpointed to a particular element: for example, if the element is defined as an integer but the value
“ABC” is submitted. For this kind of error, use XmlElementInfo to report the offending element. Another
type of error is not focused on one element: for example, if a CSV file is submitted for XML validation. In
this case, use XmlGeneralErrorList to include a list of error messages.

Main Operations
Communication in Web Services is defined by the request message and response message. There are
three required operations: SubmitData, RetrieveStatus, and QueryLimit. The data structures for the
request and response messages corresponding to these operations are defined in the NEMSIS WSDL.

Username, password, and organization are always required for any WS request. For the three defined
operations, values for element requestType are predefined. Systems may support additional operations
with a custom value for “requestType”. The NEMSIS TAC does not test the ability to support custom
operations. All operations also include an element of “additionalInfo” to allow for custom input.

NEMSIS WS response messages all include a status code (discussed above) and an echoing
“requestType”, set to the same value as in the request. Except for the function of QueryLimit, they also
include a unique identifier “requestHandle”, a system-assigned unique identifier at the server side for
the transaction that takes place as a result of the request. In multiple query response situations, the
“requestHandle” is used as a common point of reference.

SubmitData
To submit data, the client needs to specify the data payload, data schema, and schema version. As
discussed above, the combination of data schema and version will decide the standard for the data
submitted. After the payload is submitted, it is subject to XSD and Schematron validation. The
submission is to be rejected if:

1. XSD validation fails
2. National Schematron [FATAL]s or [ERROR]s are generated
3. State Schematron [FATAL]s or [ERROR]s are generated
4. Other critical business rules are violated
5. The size of SOAP message exceeds the limit set by the server

The response for data submission could be synchronous or asynchronous: in the synchronous situation,
an object of “SubmitDataReport” is included in the response, together with status code, handle, and
echoing requestType. In the asynchronous situation, the server is not able to process the submitted data
in time. Then “SubmitDataReport” is not included in the response. The client should use the assigned
requestHandle in the response message to query the server later.

RetrieveStatus
The RetrieveStatus operation is used to retrieve results from a previous submission. This is most
important for an asynchronous response from the submission. However, even with a synchronous
response, the server should save the submission processing status result for a limited time period. In this
case, if the client needs to retrieve the result later, it can use the returned requestHandle.
Possible responses to RetrieveStatus operation:

http://svn.apache.org/viewvc/xerces/java/trunk/src/org/apache/xerces/impl/msg/

NEMSIS V3 Web Services Guide Page 7 of 13

1. If the process is still pending, the server should return the same requestHandle and status code
of 0.

2. If the process is completed and status is available, the server should return the same
requestHandle, proper status code, and a SubmitDataReport.

3. The server should return an appropriate code if the status is not available because the status has
expired or been deleted, or the requestHandle is not a valid identifier.

QueryLimit
Different web servers and WS implementations could apply a unique constraint on the size of the whole
Web Service message. WS clients can use this interface to query WS server’s configuration for this limit.
The response to QueryLimit could be:

1. A positive integer to indicate the size limit on data payload, expressed in KB (1024 bytes).
2. A negative integer and an error status code.

NEMSIS V3 Web Services Guide Page 8 of 13

Use Cases for NEMSIS Web Services
Case 1 – Submit Data Request, Synchronous scenario
Step 1: Agency “Elmo” wants to send an EMS record to state “Sesame Street”. A Submit Request is sent
with “Request Type” = “SubmitData”. The SOAP message looks like this:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ws="http://ws.nemsis.org/">
 <soapenv:Header/>
 <soapenv:Body>
 <ws:SubmitDataRequest>
 <ws:username>emonster</ws:username>
 <ws:password>ABC123</ws:password>
 <ws:organization>ElmoAgency</ws:organization>
 <ws:requestType>SubmitData</ws:requestType>
 <ws:submitPayload>
 <ws:payloadOfXmlElement>
 <!—NEMSIS EMSDataSet -->
 </ws:payloadOfXmlElement>
 </ws:submitPayload>
 <ws:requestDataSchema>61</ws:requestDataSchema>
 <ws:schemaVersion>3.5.0</ws:schemaVersion>
 <ws:additionalInfo></ws:additionalInfo>
 </ws:SubmitDataRequest>
 </soapenv:Body>
</soapenv:Envelope>

Step 2: The State receives the message and successfully processes it within a reasonable amount of
time. It replies with a “requestHandle”, a system-assigned unique identifier for the transaction of
handling Elmo’s WS request. Then the response message looks like this:

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
 <S:Body>
 <SubmitDataResponse xmlns="http://ws.nemsis.org/">
 <requestType>SubmitData</requestType>
 <requestHandle>23456789</requestHandle>
 <statusCode>1</statusCode>
 <reports>
 <xmlValidationErrorReport>
 <totalErrorCount>0</totalErrorCount>
 </xmlValidationErrorReport>
 <schematronReport>
 <completeSchematronReport>
 <completeReport>
 <payloadOfXmlElement>
 <!-- attached Schematron report -->
 </payloadOfXmlElement>
 </completeReport>
 </completeSchematronReport>
 </schematronReport>
 </reports>
 </SubmitDataResponse>
 </S:Body>
</S:Envelope>

NEMSIS V3 Web Services Guide Page 9 of 13

Case 2 – SubmitData Request, Asynchronous Scenario
Step 1: Same as Case 1, Agency “Elmo” sends XML to state “Sesame Street”

Step 2: The state receives the XML file. Because the system is too busy handling other agencies’
requests, the response message looks like this:

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
 <S:Body>
 <SubmitDataResponse xmlns="http://ws.nemsis.org/">
 <requestType>SubmitData</requestType>
 <requestHandle>12345678</requestHandle>
 <statusCode>0</statusCode>
 </SubmitDataResponse>
 </S:Body>
</S:Envelope>

Step 3: After 5 minutes, as a responsible agent, Elmo thinks it has given the state system enough time to
process the data. Using “requestHandle”, Elmo can query the state system to get the result of its
previous WS request. The SOAP message for this kind of “RetrieveStatus” request looks like this:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ws="http://ws.nemsis.org/">
 <soapenv:Header/>
 <soapenv:Body>
 <ws:RetrieveStatusRequest>
 <ws:username>emonster</ws:username>
 <ws:password>ABC123</ws:password>
 <ws:organization>ElmoAgency</ws:organization>
 <ws:requestType>RetrieveStatus</ws:requestType>
 <ws:requestHandle>12345678</ws:requestHandle>
 <!--Optional:-->
 <ws:originalRequestType>SubmitData</ws:originalRequestType>
 <ws:additionalInfo></ws:additionalInfo>
 </ws:RetrieveStatusRequest>
 </soapenv:Body>

</soapenv:Envelope>

Step 4: At this stage, Elmo Agency could receive one of two different responses.

1. If the state has processed the file, they will receive a response similar to Case 1, Step 2.
2. If the state has not processed the file, they will receive the response in Case 2, Step 2 again.

Elmo will need to send another retrieveStatus request later to determine the status of their
submission.

Note: If for any reason Elmo forgets the status of his submission, even after he has received notification
of a successful submission, Elmo should be able to send a “RetrieveStatus” request to the state again.
The state should respond back with a status as seen in Case 1, Step 2. If the requestHandle is for an old
submission, the state may tell Elmo the status has expired. For example, the national registry
maintained by the NEMSIS TAC does not guarantee responses on submissions more than 6 months old.

NEMSIS V3 Web Services Guide Page 10 of 13

Authentication/Security Implementation
Some vendors might prefer to utilize the security element in the SOAP message’s header. Web Service
Security Specification, published by OASIS (http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-
SOAPMessageSecurity.pdf), provides a set of mechanisms to enforce message integrity and
confidentiality. However, due to the differences among EMS vendors/deployments, the NEMSIS TAC will
not specify a particular SOAP security header structure. A vendor may choose to include the
authentication information in the SOAP header. In such instances, both ends of the WS communication
must agree to the security mechanism (and ignore the username/password parameters in the proposed
object nemsisV3WsRequest). For example, they can choose to use (a)symmetric keys to encrypt
username/password.

Passwords should never be sent as clear-text over a non-secured channel. This requirement is always
met in NEMSIS-compliant web services, because NEMSIS requires the use of the HTTPS protocol.

http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-SOAPMessageSecurity.pdf

NEMSIS V3 Web Services Guide Page 11 of 13

Web Service Status Codes
The following is a summary of all status codes used in the NEMSIS V3 WSDL
Note: If any discrepancy is found between this document and the latest NEMSIS Version 3 WSDL release,
the WSDL will take precedence.

PrivilegeErrorCodes:
Error codes of
authenticaition/authorization
for an attempted web service
operation

-1 Invalid username and/or
password

-2 Permission denied to the client
for the operation

-3 Permission denied to the client
for that organization

ParameterErrorCodes:
Generic error codes fan an
attempted web service
operation

-4 Invalid parameter value
-5 Invalid parameter combination

ServerErrorCodes:
Error codes for web service
server

-20 Generic server error
-21 Server error, because of

database connection/operation
issue

-22 Server error, because of file
system/network/IO issue

SubmitDataProcessCodes:
Codes to describe return codes
for an attempted data
submission web service
operation

-11 Failed import of a file, because
the same file is already on the
server

-12 Failed import of a file, because
of failing XML validation

-13 Failed import of a file, because
of [FATAL] level Schematron
rule violation

-14 Failed Import of a file, because
of [ERROR] level Schematron
rule violation

-15 Failed Import of a file, because
of critical ETL rule violation

-16 Failed import of a file, because
of critical Business Intelligence
rule violation

-30 Failed import of a file, because
the size of SOAP message
exceeds the limit

1 Successful import of a file
2 Successful import of a file, with

[ERROR] level Schematron rule
violation reported

3 Successful import of a file, with
[WARNING] level Schematron
rule violation reported

NEMSIS V3 Web Services Guide Page 12 of 13

4 Successful import of a file, with
ETL rule warning

5 Successful import of a file, with
Business Intelligence warning

6 Partially successful import of a
file, with [ERROR] level
Schematron rule violation
reported

10 File has passed validation,
processing is not yet complete

ResultPendingCode:
Code to indicate the process is
not finished on the server for an
attempted web service
operation

0 The expected data processing is
not yet complete

RetrieveErrorCode:
Code to indicate the error
status for RetrieveStatus
operation

-40 Status for the requested
requestHandle is not available:
it could be expired, or not in the
correct format, or never exist,
or for any other whatever
reason.

-41 Status for the requested
requestHandle is not available
since it expires already

-42 Invalid value of requestHandle
(for example, not formatted
properly)

-43 Never-used value of
requestHandle

QueryLimitCodes:
Code to indicate the status for
QueryLimit operation

51 Successful operation of
QueryLimit

-50 Server is too busy. The client
should query later

-51 Failed operation of QueryLimit
CustomErrorCodes:
State or Vendor specific error
returning code for web service
request. It should be smaller
than -100

Smaller than -100

CustomSuccessCodes:
State or Vendor specific success
returning code for web service
request. It should be greater
than 100

Greater than 100

NEMSIS V3 Web Services Guide Page 13 of 13

Using SoapUI
SoapUI is a popular open-source application for testing web services. See the following resources for
using SoapUI as a web service testing tool:

• Download SoapUI: https://www.soapui.org/downloads/soapui.html
• Official Getting Started Guide for SoapUI: https://www.soapui.org/getting-

started/introduction.html

Other applications, both free and paid, can also be used to test web services.

References
1. WS-SecurityPolicy 1.2. OASIS Standard, 1 July 2007. http://docs.oasis-open.org/ws-sx/ws-

securitypolicy/200702/ws-securitypolicy-1.2-spec-os.pdf
2. Web Services Security: SOAP Message Security 1.1. OASIS Standard Specification, 1 February

2006. http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
3. Web Services Security: UsernameToken Profile 1.1. OASIS Standard Specification, 1 February

2006. http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-
UsernameTokenProfile.pdf

4. SOAP Message Size Performance Considerations. C. Rayns. T. Clarke, et al., 27 August 2007.
http://www.redbooks.ibm.com/abstracts/redp4344.html

5. The Transport Layer Security (TLS) Protocol Version 1.3. E. Rescorla, Mozilla, August 2018.
https://tools.ietf.org/html/rfc8446

https://www.soapui.org/downloads/soapui.html
https://www.soapui.org/getting-started/introduction.html
https://www.soapui.org/getting-started/introduction.html
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.pdf
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.pdf
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.redbooks.ibm.com/abstracts/redp4344.html
https://tools.ietf.org/html/rfc8446

	Date
	Author:
	NEMSIS V3 Web Services Guide
	Background
	Purpose of NEMSIS V3 Web Services API
	Work Flow Diagram (Submission Request Only)

	General Requirements
	Detailed Requirements
	Protocol
	Security
	WSDL
	Status Codes
	Important Common Objects
	DataPayload
	DataSchema and schemaVersion
	SubmitDataReport
	XmlElementInfo
	XmlValidationError
	Main Operations
	SubmitData
	RetrieveStatus
	QueryLimit

	Use Cases for NEMSIS Web Services
	Case 1 – Submit Data Request, Synchronous scenario
	Case 2 – SubmitData Request, Asynchronous Scenario

	Authentication/Security Implementation
	Web Service Status Codes
	Using SoapUI
	References

